EESIING PDAL TO
STREAMLINE
LIDAR DS

EROD UGl

Services Workflows & Process ing
TNRIS Forum
October 25t 2023

Brent Porter

SERTING-1 HE
STAGE

L1DAR (Dr Jekyll)

Undisputedly awesome source of elevation data for visualization &
computation/modeling

e Currently we have statewide coverage in Texas thanks to the efforts of many
oroups and data champions

* Available for download and updated often by the good folks at TNRIS ahem
TxGIO (I kid I kid)

SERTING-1 HE
STAGE

[do like the new name, really!
But I am also sad about that name!

Ok I am done. I promise*

SERTING-1 HE
STAGE

L1DAR (Mr Hyde)

Laz & Las files are still a heavy lift for some folks
e Particularly if you have a larger area or lots of areas you need to work with
* Lots of space required for even regional coverage of LIDAR data
* At UT we are hosting roughly 30TB of laz files right now (that number will
only get bigger)
* Not only is it big ‘on disk’ - it takes lots of processing and therefore lots of time
to work with the data.

What this means is that it just ‘makes sense’ for us to use the preprocessed DEMs
which are in comparison smaller and preprocessed.

SERTING-1 HE
STAGE

DEMs

 DEMs really are a great compromise

But they are still a compromise
* The footprints & areas are predefined
* The filters on the point signals are also predefined

You get what I am saying. Nothing wrong with them but what if I want
or need something different!

SERTING-1 HE
STAGE

So I started thinking?

Is there anything out there that could make working with the source
point cloud data easier to build workflows and hopefully automated
workflows for custom areas and custom output products’

THE CHALLENGE

Complexities
* Scaling a dense & complicated dataset for use on-demand

* Experimenting with performance of pdal processing and other spatial
workflows

* Architecture for workflows and optimized point cloud queries

THE CHALLENGE

[s there a good solution for what I'd like to do?

TEEEEONT ENDER

After some searching, I settled on

TEEEEONT ENDER

PDAL!

PDAL is Point Data Abstraction Library
* [t is built conceptually like GDAL

e Command line tool with lots of features

TR EONT ENDER
PDAL

PDAL - Point Data Abstraction Library

PDAL is a C++ library for translating and manipulating point cloud data (.. It is very

much like the GDAL (£ library which handles raster and vector data. The About page

provides high level overview of the library and its philosophy. Visit Readers and Writers Q O
to list data formats it supports, and see Filters for filtering operations that you can

apply with PDAL. P d Q I

In addition to the library code, PDAL provides a suite of command-line applications that
users can conveniently use to process, filter, translate, and query point cloud data. Applications provides more information on that

topic.

Finally, PDAL speaks Python by both embedding and extending it. Visit Python to find out how you can use PDAL with Python to
process point cloud data.

The entire website is available as a single PDF at http:/pdal.io/PDAL.pdf (%'

TEEEEONT ENDER
R AT

Capabilities

* Works with las and laz files directly

* Lots of Readers, Writers & Filters

* Primarily Python - it is easy to integrate with gdal library tools (and
other python libraries for complex workflow creation

* API connections to C++, Python as well as Java bindings (yum) & a
DSL for Scala (a little more on this later)

TEEEEONT ENDER
R AT

Ok but what does that mean to us?
Because that was some nerdish that just got thrown down!

[say that as an unrepentant nerd myself

TEEEEONT ENDER
R AT

To work with PDAL on the command line you invoke pdal while using
conda environment mgmt. system to get all your libraries configured
correctly - so 2 pdal pipeline <name/location of pipeline json file>

(base) C:\Users\Administrator>e:

(base) E:\>cd geodatal\lidar_tiledb

(base) E:\Geodata\lLidar TiieDB>pdal pipeline pipuline-refilter-desert-mountain-alltiff-west-fileonly-defaultsmrf.json

THE CONTENDER
PDAL

The workflow for working with pdal includes 3 categories/components

that you connect in a .json file to make that pipeline to generate output
data (in many formats)

Filters
Writers

Readers o
> Readers Writers

19/30/25

TEEEEONT ENDER
R AT

The quick takeaway on capabilities is that there are lots of pathways to
using the library

AND

Reading between the lines - when a library feels confident enough to
provide many pathways its because they have seen the value of the
library and what it adopted as broadly as possible

Also, all of those choices means it will be easier to onboard someone for
PDAL work you will be more likely to find lots of interest and
collaboration opportunities

TEEEEONT ENDER
R AT

SOUND GOOD... Or at least possibly interesting?

LET S LOOK AT
FILTERS

ot B
(R s B
fil

B Filters
B Create
B Classification
Ground/Unclassified
Noise
Consensus
Height Above Ground
Colorization
t Clustering
Pointwise Features
Assignment
Dimension Create/Copy
Order
Move
Cull
New
Join
Metadata
Mesh

Languages

here are several filters that come with PDAL organized into categories
hese are ways of processing the lidar data in certain ways (including
tering the points to produce both DTMs and DSMs

Filters
Filters operate on data as inline operations. They can remove, modify, reorganize, and add points to the d:

Some filters can only operate on dimensions they understand (consider filters.reprojection doing geograpl
coordinates), while others do not interrogate the point data at all and simply reorganize or split data.

Create

PDAL filters commonly create new dimensions (e.g., HeightAboveGround) or alter existing ones (e.g., ¢
filters will not invalidate an existing KD-tree.

We treat those filters that alter XYZ coordinates separately.

When creating new dimensions, be mindful of the writer you are using and whether or not the custom ¢

to disk if that is the desired behavior.

Classification

Ground/Unclassified

FILTERS
More Details

e These filters are also chainable!*
* You could for example, gather all of the building ‘signals’, filter it from
a set of laz files for a particular extent or boundary, reproject them

and then create a point csv that could then be used to provide
elevation to 2d vector dataset you extracted with ML!

* There are over 70 filters all told categorized into ten categories.

LET’S REVIEW THE PIPELINE

Everything circled is part of the pipeline

json file

‘ Readers Writers

PIRELINES

Early Example: Chaining

pdal pipeline - querying data

from point cloud db and
filtering for bare-earth

(DTM)

1{
] "pipeline™:[
] {
"type":"readers.pgpointcloud”,
"connection":"host='localhost' dbname='geopointsdb' user='postgres' password=’xxxxxxﬂ' jo
"table":"sthsm",
llcol.m:-." . llpall .
"spatialzad

"type":"filters.assign",
"assignment":"Classification[:]=0"

"type":"filters.elm"

"type":"filters.outliexr"”

llq‘ Ope" .
"window": 5
"threshold":
wscalar®:

*cype®:*filters.r
11‘4n;tsll-llc‘aqs; -

PIRELINES

Early Examples — wildcard for files

"type":"filters.range",
Most of these were small sets of "limits":"Classification[2:2]"
} s
1, 2 or 4 laz files and primarily «
:) "f;-?:an.e" : "dtm:red:x—SOQTé;Zc 5 i L halg®
just for getting used to the "gdaldriver":"GTiff",
output_type":"all",
process of building a set of filters "resolution™:"1.0%,
type": "writers.gdal

and parameters for input/output '

}

TERRAIN

PRODUCTS
Early Example Result

DSM from LiDAR source for . X
§ % A 'ﬂr
Port Arthur showmg an Y ';;;gf\;f’"ﬁ:

4,t,q)

{é s ‘é >
' &\5}’ ‘3/7 ~ \'%
-’.'3":*“ i ’?a g, Y,

neighborhoods

.h {? .k >
ALY o)91\5
N ot~ g h
4"?’}"" “"‘i"_ < Y’ ‘ ?‘:’2‘3"
) 2 ‘X’"ﬁ‘ W
4 (‘O\Yti ¥
. ;x?_'. IRy X 4
; 5 h’;”*

R o

, o TR B

10/30/25 .

d”

*

1ge

“Ix S

Early Example Result

TERRAIN

PRGHDTEC TS

o
o~
S
R,
<)
S

TERRAIN

PRODUCTS
Eaﬂy Examples

DSM¥om LiDAR source fo
Eagle Pass showing buildings
and topography

10/30/23 25

TERRAIN

REEGHEIRLFC [S

Early Examples
Travis County hillshade & DTM

with a custom color gradient

; —\

THESE SEEM VIABLE, INTERESTING AND
RIS LE AT FIRST GLANCE, RIGH [

Well then...

Once more unto the breech Dear Cartographers, once more!

SEEEEN-'ET 5-TALK ABOUT....

Wb METRICS!I?!!

[know I know

But sometimes you just got to go there - last year I was discussing
metadata and now metrics.

[ts like I've turned into my father’s geographer

WHAT IS METRICS REALLY WITHOUT
AN EXPERIMENTAL ENVIRONMENT?

Hardware
Windows 2016 Server Virtual Machine

4 cores Dell “Gold” 6138 Xeon 2GHy
32 GB Ram

Software

PDAL 2.5.3 (Conda3/Python 3.10.10)
ArcGIS Pro 3.1

QGIS 3.4

METRICS

Lets look at processing laz files for eagle pass

into a DSM

(for tiles — equate 1 tile with one lag file)
[am using a morphological filter and playing
with the return numbers filtered as well as

which bands for the output geotif

Single Tile SMREF 2:2 to 7:7 Classification Min Tiff

8 Tiles SMREF 2:2 to 6:7 Classification Mean Tiff
8 Tiles 2:2 Only Classification All Tiff

16 Tiles 2:2 Only Classification All Tiff

12 Tiles 2:2 Only Classification All Tiff

3:48
54:25:00
18:14
52:43:00
13:27

Classification Value and Meaning

O Joy U WDNDBE O

9

Created, never classified
Unclassified

Ground

Low Vegetation

Medium Vegetation

High Vegetation

Building

Low Point (noise)

Model Key-point (mass point)
Water

10 Reserved for ASPRS Definition

11 Reserved for ASPRS Definition

12 Overlap Points

13-31 Reserved for ASPRS Definition

METRICS

Let’s look -

Some oddities & chin scratchers...

Single Tile SMRF 2:2 to 7:7 Classification Min Tiff

8 Tiles SMREF 2:2 to 6:7 Classification Mean Tiff

8 Tiles 2:2 Only Classification All Tiff

16 Tiles 2:2 Only Classification All Tiff 52:43:00
12 Tiles 2:2 Only Classification All Tiff 13:27

Look at those times! Why the heck does it take
less time for 12 laz files than 82777

METRICS

Looking deeper into provides some insight.
Turns out that differences in lag file sizes can
also affect the performance!

Single Tile SMRF 2:2 to 7:7 Classification Min Tiff 3:48
8 Tiles SMREF 2:2 to 6:7 Classification Mean Tiff 54:25:00
8 Tiles 2:2 Only Classification All Tiff 18: 4% 544 mb laz
16 Tiles 2:2 Only Classification All Tiff 52:43:80 1025 mb laz
12 Tiles 2:2 Only Classification All Tiff 13: X 329 mb laz

METRICS

Also using all bands in creating the tiff and
then post-processing for the single band mean
was WAY more efficient that doing it with

PDAL
Single Tile SMREF 2:2 to 7:7 Classification Min Tiff .
8 Tiles SMRF 2:2 to 6:7 Classification Mean Tiff 54:25:00
8 Tiles 2:2 Only Classification All Tiff 4 mb laz
16 Tiles 2:2 Only Classification All Tiff 52:43:09/1025 mb laz

12 Tiles 2:2 Only Classification All Tiff 3:27 329 mb laz

METRICS - GIVE ME SOME
PERSPECTIVE HERE!

How big an area is this

12 laz files is generally 2 or more huc 8s but
your mileage may vary depending on the area

This is the area in W Tx |
[used for this talk —
USGS 2019 Desert Mt

24 laz files &
70em data

METRICS

; : "pipeline™: |
Back to output_type in the writer e
Here are some shots of different choices {

"type":"filters.range",
"limits":"Classification

When you choose ‘all’ you get ‘bands’ for min,

5 {
max, mean, idw, count & stdev v£11 enames s T e eG4 2c . 11 £",

{ { "gdald Fery " GIi1TL™ ;
"pipeline": [

n . . - m.n - n
G 1in out type™: "min
"ground/*.laz", ki n . f_4'pn.yw an ’
{ "C_IZ'O'.I‘.". reso E1ON™ 2 ™4™,
"type":"filters.range", { "type": riters.gdal"
"limits":"Classification[2:2]" "typ }

}e

"filename" JPM=Yedu>

’ : "GIifTIv,

type™: "mean®,
] "yesz0l 240“11.11' namn
r iREion*:"1.0%,

riters.gdal"”

pe”: "writers.gdal"

METRICS

Winner Winner Chicken Dinner!!

From those earlier metrics we can see that it is 3 times faster (on
average) to use “all” rather than using the more selective options

"type":"filters.range",

"limits":"Classification[2:2]"

'resolution":"1.0",

vpe": "writers.gdal"

METRICS

To summarize those findings
The processing performance and time to completion are dependent

on
1. Number & type of Filter (remembering also that filters can be

chained!)
2. Attributes of those Filters (for example — the difference in time

for generating tifs with all ‘bands’ vs selecting min/max/mean)
3. Characteristics of your point cloud data (overall size, density of
points, resolution, etc.)

METRICS - ALSO!

Database Source (pg-pointcloud/postgres) vs File-based

PG-PointCloud,/PostgreSQL can store point cloud data that can be

accessed via a reader in pdal

e Initial cost does take time — 24 lag files took 54:14 to load
* That’s non-trivial BUT the pay off is worth it in my testing!

First time is the File-based & the second is for the DB Call

Default SMRF File-based Default SMRF Filter Postgres
Tiles East of 12 12 Tiles East of 12
Tiles West of 12 12 Tiles West of 12

45:13:00
45:17:00

METRICS

DB vs File-based continued

Database sources are consistently 3 times faster using the same
filters and the same laz files to generate DTMs .

I {
"pipeline™: ["type":"readers.las",
| { "filename":"desert_mountain
"type":"readers.pgpointcloud”,
"connection":"host='localhost' dbname='geopointsdb' user='postgres' password='xXxxxXxXxx' port='5432'",

_usgsl9 70cm3/file-test/*.laz",

"spatialreference":"EPSG:26913"

neablem:mSefEn, },

"column®: "pa”, {
"spatialreference":"EPSG:26913", "type":"filters.smrf"
"where":"PC_ Intersects(pa, ST_MakeEnvelope (482618, 3497387, 488396, 3493134, 26913))"

}, {

{ -
"type":"filters.smrE" "type“:"filters.range",

), "limits":"Classification[2:2]"

{ o

"type":"filters.range", {
"limits":"Classification[2:2]" -

) st "type™:"writers.gdal",

% "filename":"desert-mountain-usgs2019-where-fileonly-defaultsmrf.tif",
"type":"writers.gdal”, "O'.:tp'.:t_t'-_.»'pe" et - B B g
"filename":"desert-mountain-usgs2019-where-defaultsmrf.tif", "gdaldrivexr":"GTiff",
"output_type":"all", "window size":
wgdaldriver™:“GTirtr"™, - B s i d

resolution™ :
"window size™:3, resolution”:

"resolution”: }

METRICS

DB vs File-based continued

And remember - that is doing an arbitrary query (meaning you
can build any where clause to query your point cloud table) against

the database for an extent using PostgreSQL’s PostGIS spatial
extension

METRICS

DB vs File-based continued - sample where clause in UTM

| {

Z 13 | "pipeline": [

| {
"type":"readers.pgpointcloud”,
"connection":"host='localhost' dbname='geopointsdb' user='postgres' password='XxXxXXxXxx' port='5432'",
weableY:"jeff™,
Hcol..
patialreference":"EPSG:26913",

maes": "PC Intersects(pa, ST _MakeEnvelope (4826

v—"-

' >
0D
W
'Y
w
]
w
o
-]
~

[
(53]
(53]
w
w
n

"type":"filters.smrf"

"type":"filters.range",

"limits":"Classification[2:2]"

"type":"writers.gdal",
"filename":"desert-mountain-usgs201
"output_type":"all",

“gdaldriver®” :"GIitftT",

"window size":3,

"resolution":

W

-where-defaultsmrf.tif",

WHAT IS NEXT??

There are lots more things to work on...

* Running the PDAL processes on Lonestar 6 - one of UTs HPC
environments over at TACC - by threading out the process to many
nodes can we see orders of magnitude increases in performance!

* Increasing the memory allocation for the hardware running PDAL

BUT WAIT THERE'S MORE!!

FUTURE COOL

PDAL also offers Java Bindings! & sample code to work with Scala (a
jvm-compiled language built specifically for parallel processes and
threading) - running tests with Scala & Java could also enhance
performance as generally java programs run quicker than python-based
scripts

IS IT POSSIBLE TO
OPERATIONALIZE THIS
WORKEFLOW?

While building and running these workflows are interesting, is it

possible that we could provide a service that allows for custom download
of point cloud data for a custom area!’

We will hopefully answer that as the experiments progress!

THANK YOU ALL FOR LISTENING TO ME
RANT AND DRONE ON ABOUT THIS!

Questions!

Thanks also to TACC & all of the great folks over there that we are working with and my
good teammates at CSR. And the folks at TNRIS* (hee hee) for providing LiDAR for Texas

* Ok NOW | am done

