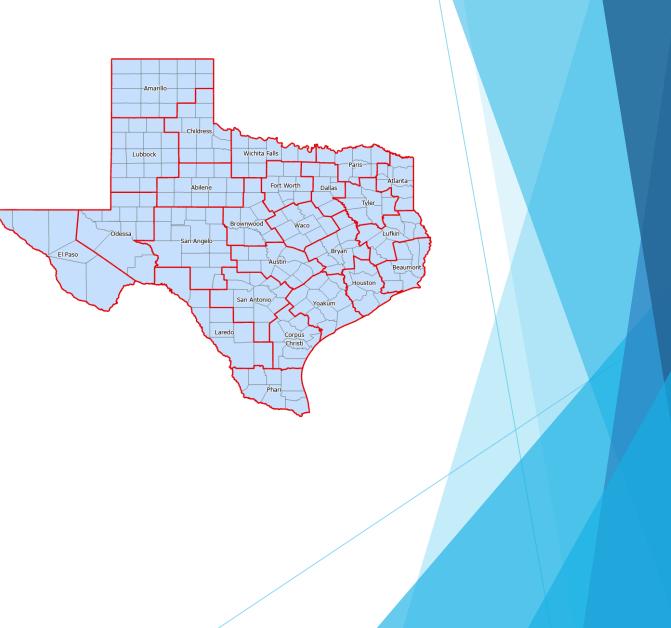


Paving the Road with Automation

Erik Martinez Luna

Texas Department of Transportation & Penn State University

Advisor: Panos Giannakis

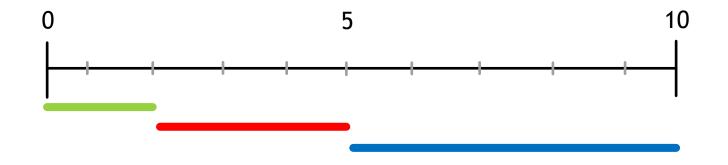

October 25, 2023

Presentation Objective

- Texas Department of Transportation (TxDOT) Background
- Geospatial Roadway Inventory Database (GRID) Background
 - What is it
 - Why is it important
 - Opportunities for improvement
- GRID Workflow Enhancement
 - KG Roadbed Attribution Builder (KRAB)

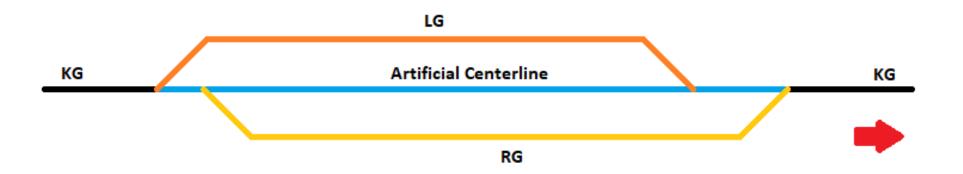
TxDOT Background

- Maintains Texas Roadway System
 - Roughly 80,000 miles of on-system roads
 - Network divided into 25 Districts
- Transportation Planning and Programming is responsible for geometry, asset attribution and reporting
 - Network maintained using a proprietary software known as the Geospatial Roadway Inventory Database (GRID)

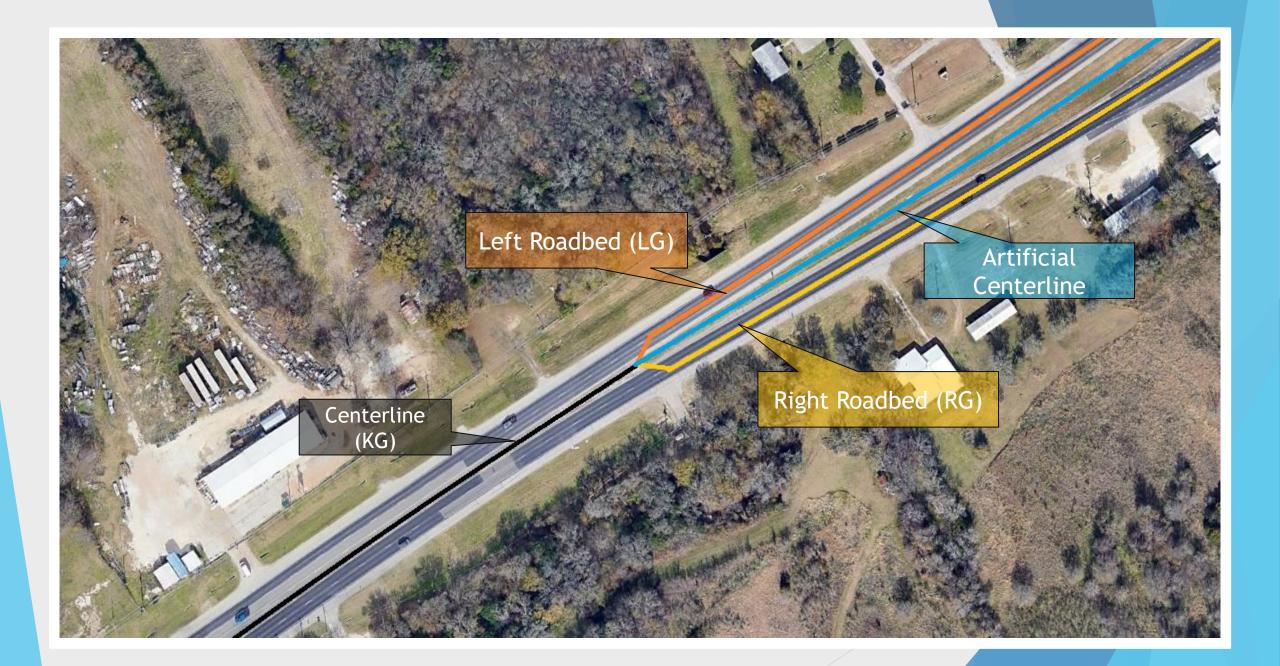


GRID Background

Stores descriptive data such as physical and categorical information


- Each data type (aka asset) stored in individual tables
- Assets are recorded along a route using a linear referencing system (LRS)
- Two methods of updating asset attribution
 - Through GUI within GRID Portal
 - Extract, Transform and Load (ETL) of bulk packets
- Roadbed attribution updates are required when route geometry has been edited

Linear Referencing System Explained



ASSET ID	BEGIN MEASURE	END MEASURE	ASSET TYPE
1	0	2	Green
2	2	5	Red
3	5	10	Blue

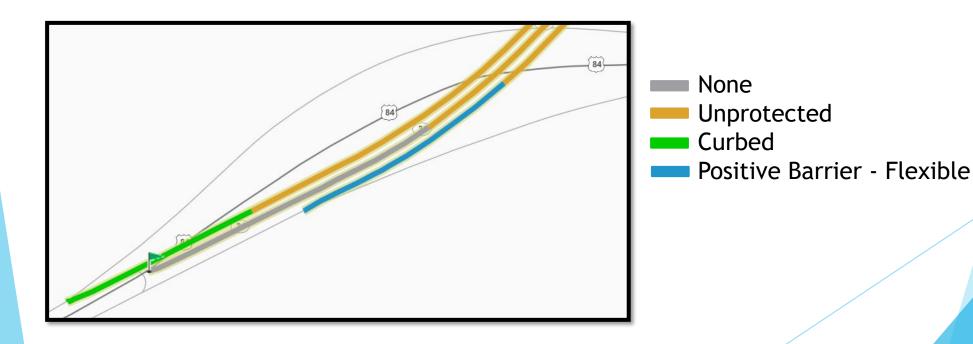
Basic Roadway Model

KG - Centerline
LG - Left Roadbed
RG - Right Roadbed

Why maintaining GRID data is Important

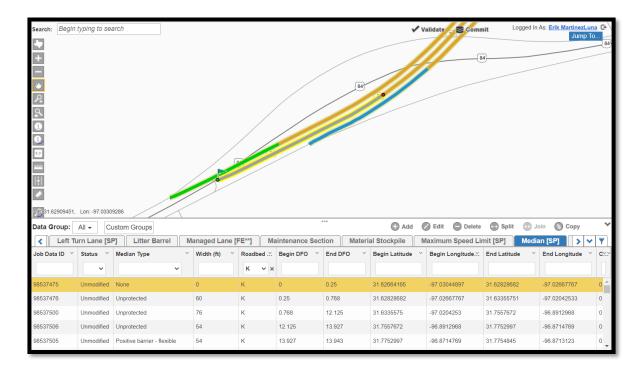
- Roadbed Attribution Accuracy
- Support other TxDOT projects and efforts
- Meet Federal reporting requirements

Inefficiencies with current attribution workflow

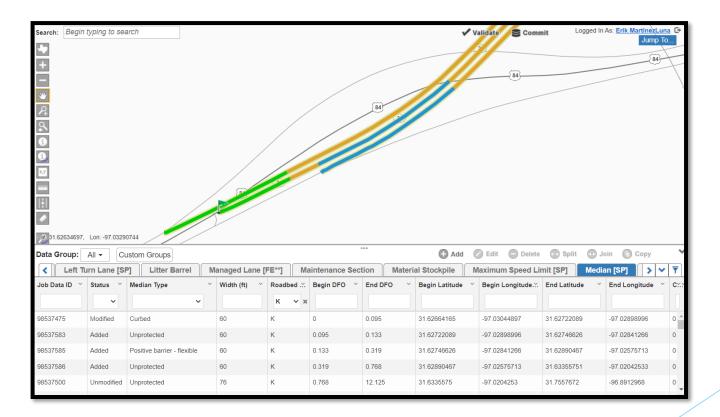

- No automated functionality within GRID to transfer attribution from one roadbed to artificial centerline
- Attribution of artificial centerline is time costly and increases likelihood of introduction of human error within database

In an Ideal World

- Why not just copy the attribution from right roadbed and paste them within an ETL Packet?
 - Each roadbed has their own independent LRS


GRID Job Example - SH 31 Median Asset

- SH 31 Centerline Review
 - First artificial centerline is incorrectly classified as 'No Median' and 0 ft width
 - Needs to mirror right or left roadbeds


Working a GRID Job

- Create job selecting SH0031 for attribution Editing
- Select the Median Table
- Verify asset type on right and left roadbed

Working a GRID Job

- Copy attribution from roadbeds to centerline
- Merge potential records with the same attribution values if able

GRID Workflow Enhancement - KRAB

KG Roadbed Attribution Builder (KRAB)

- A custom python application automating the attribution of artificial centerlines using existing left and right roadbed attribution
- Application integrated with existing ETL tools with ArcGIS Pro developed by TxDOT
- Main Goal
 - Lower time to attribute routes within GRID

Querying and Data Extraction

- Initiate TxDOT's inhouse asset retriever to generate a GDB with selected assets
- Query GRID for main lane attribution, attribution measures, geometry and coordinate information

		A	ABCONLLAT				A 88 19959		A 85000 850	
	<pre> RDBD_GMTRY_LN_ID </pre>	∛ NAME	BEGIN_LAT	BEGIN_LON	<pre> { END_LAT </pre>	♦ END_LONG	ROADBED	RDWAY_STAT_TYPE_ID	BEGIN_DFO	♦ END_DFO
1	1628640070	SH0031	31.62732497	-97.02835848	31.89628644	-96.72835468	R	5	0.133	26.074
2	1631059424	SH0031	31.90416214	-96.71245643	32.04387929	-96.53963106	R	5	27.146	41.274
3	1631059466	SH0031	32.10567142	-96.38347591	32.11687978	-96.33122303	R	5	53.059	56.234
4	1631145606	SH0031	32.11845416	-96.32074604	32.13090303	-96.24500018	R	5	56.864	61.392
5	1631145610	SH0031	32.1341971	-96.2223522	32.1480944	-96.0894871	R	7	62.739	70.629
6	1631145616	SH0031	32.15113161	-96.08048207	32.16505738	-96.03846109	R	5	71.196	73.841
7	1631145620	SH0031	32.17563718	-95.99185599	32.19443398	-95.90891205	R	5	76.684	81.716
8	1631145626	SH0031	32.22782761	-95.81091421	32.27469177	-95.75658344	R	5	87.923	92.469
9	1631145632	SH0031	32.28096672	-95.74016097	32.30129306	-95.62464225	R	5	93.534	100.442
10	1631145638	SH0031	32.297282	-95.52353607	32.30578335	-95.49049472	R	5	106.645	108.751
11	1631145642	SH0031	32.31419151	-95.45501683	32.33134599	-95.38689903	R	5	110.91	115.141
12	1631145646	SH0031	32.41743329	-94.84598172	32.42460895	-94.83832374	R	5	148.067	148.745
13	1631145656	SH0031	32.43490295	-94.82756923	32.4402209	-94.82123275	R	5	149.673	150.197

Extracted Roadbed Coordinate and Measure Table

Extracted Roadbed Attribution Table

	∯ GID	ROUTE	ASSET_LN_BEGIN_LAT	ASSET_LN_BEGIN_LON	ASSET_LN_END_LAT	ASSET_LN_END_LON	MDN_TYPE_ID RDBD	ASSET_ID	WIDTH_MS	ASSET_LN_BEGIN_DFO_MS	ASSET_LN_END_DFO_MS
1	1690848005	1319	33.25454834	-96.73247498	33.2622117	-96.73293532	1 K	107011291	0	0	0.531
2	1691971288	700	31.82529747	-106.41315377	31.80462093	-106.43509649	1 K	1002361653	0	0	2.423
3	1691971290	700	31.82512458	-106.41314954	31.8087371	-106.43588404	1 K	1002361655	0	0	2.296
4	1691971292	700	31.82577174	-106.42163846	31.7951703	-106.42087266	1 K	1002361657	0	0	2.109
5	207143	700	29.46986257	-100.95222741	29.47171226	-100.95507756	1 K	1002360855	0	0	0.227
6	207322	700	29.45916832	-100.94665947	29.46522351	-100.95873034	1 K	1002360857	0	0	0.839
7	1652832020	702	29.33442359	-98.45512112	29.33417314	-98.45406729	1 K	1002361272	0	0	0.166
8	1652832022	702	29.33341879	-98.45453552	29.33188321	-98.45445071	1 K	1002361273	0	0	0.229
9	211760	702	30.72113003	-98.39125995	30.72461766	-98.38471613	1 K	1002360858	0	0	0.515
10	211761	702	30.72452711	-98.38489593	30.72486668	-98.38423337	1 K	1002360859	0	0	0.056
11	211762	702	30.7248802	-98.38423651	30.72506249	-98.38375488	1 K	1002360860	0	0	0.033

End points to identify measures along centerline

Geometry Endpoints of Left and Right

• Right Roadbed Geometry Endpoint

• Left Roadbed Geometry Endpoint

Attribution Endpoints of Left and Right

Right Roadbed Asset Begin/Endpoint
 Left Roadbed Asset Begin/Endpoint

DFO Measures for Each Roadbed Attribution on the KG

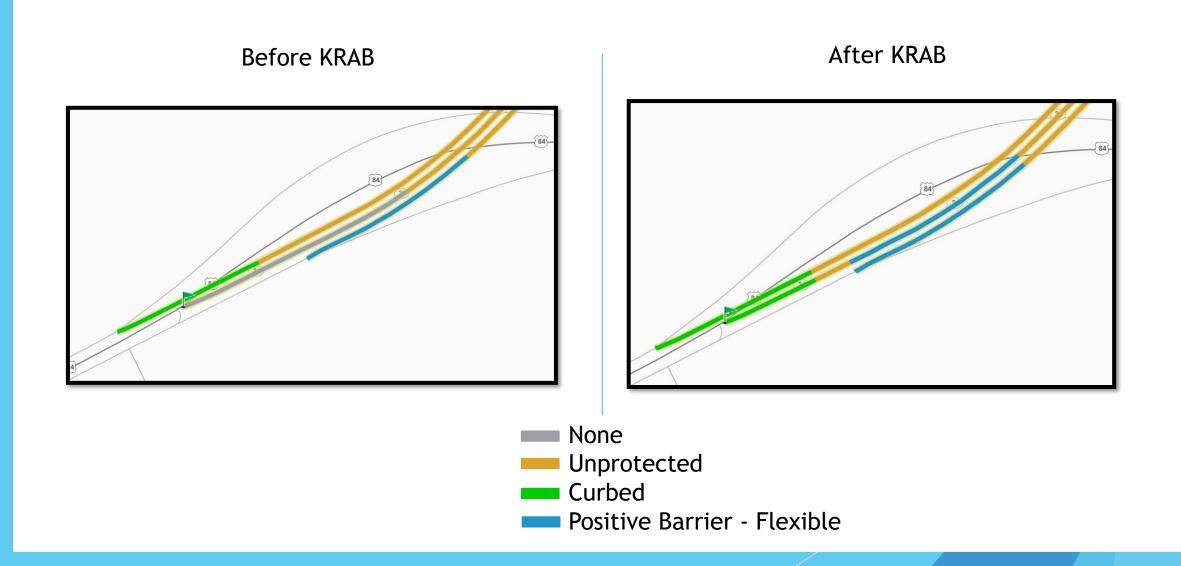
Right Roadbed

OBJECTID *	BEGIN_DFO 🔺	END_DFO	RB_RG	ASSET_RG	SEG_ID	WIDTH_MS_RG
2	0.133	0.32	RG	5	0	60
1	0.32	0.736	RG		0	60
3	0.736	12.069	RG	2	0	76
5	12.069	13.918	RG		0	54
7	13.918	14.437	RG	5	0	54
6	14.437	25.879	RG		0	45
4	25.879	26.065	RG	2	0	45
8	27.145	27.198	RG			45

Left Roadbed

OBJECTID *	BEGIN_DFO 🔺	END_DFO	RB_LG	ASSET_LG	SEG_ID	WIDTH_MS_LG
6	0	0.094	LG	3	0	60
7	0.094	0.491	LG			60
2	0.491	12.059	LG	2	0	76
3	12.059	13.862	LG			54
5	13.862	14.434	LG	2	0	54
4	14.434	25.879	LG		0	45
1	25.879	26.065	LG	2	0	45
8	27.145	27.196	LG			45

Right and Left Attribution Tables Overlay


OBJECTID *	SEG_ID *	BEGIN_DFO 🔺	END_DFO	RB_RG	ASSET_RG	WIDTH_MS_RG	RB_LG	ASSET_LG	WIDTH_MS_LG
12	0	0	0.094			0	LG	3	60
15	0	0.094	0.133			0	LG	2	60
14	0	0.133	0.32	RG	5	60	LG	2	60
13	0	0.32	0.491	RG	2	60	LG	2	60
3	0	0.491	0.736	RG	2	60	LG	2	76
4	0	0.736	12.059	RG	2	76	LG	2	76
5	0	12.059	12.069	RG	2	76	LG	2	54
6	0	12.069	13.862	RG	2	54	LG	2	54

Processed Attribution Table

OBJECTID *	ROUTE *	BEGIN_DFO 🔺	END_DFO	ASSET	WIDTH_MS	GID
18	SH0031	0	0.094	3	60	1631059288
12	SH0031	0.094	0.133	2	60	1631059288
25	SH0031	0.133	0.32	5	60	1631059288
13	SH0031	0.32	0.736	2	60	1631059288
16	SH0031	0.736	12.069	2	76	1631059288
10	SH0031	12.069	13.918	2	54	1631059288
24	SH0031	13.918	14.437	5	54	1631059288
22	SH0031	14.437	25.879	5	45	1631059288

Prepping and Pushing ETL Packet

- Using the 'Master Bounds', attribution along identified measure extents are marked as 'DELETE' to be removed from the database
- Generated artificial centerline attribution are then pushed into ETL packet
- Finally, KRAB will dissolve records by merging neighboring records with same attribution values
 - If asset IDs of record's marked as 'DELETE' can be salvaged, KRAB will recycle these IDs by reassigning them to the correct generated attribution

KRAB's Future

- Further Debugging required for niche route models
 - Currently KRAB has the functionality to identify, remove and report routes with errors after processing
- Functionality to attribute Right/Left roadbeds based on centerline

Summary

- Importance of accurate data
 - Support TxDOT project and future endeavors
 - Obtain federal funding
- Inefficiencies with current workflow
 - Attribution of artificial centerline is time costly and increases likelihood of introduction of human error within database
- GRID Workflow Enhancement
 - Automate the attribution of the artificial centerline by using left and right roadbed attribution within ETL packets.

Questions?

- For further questions, you can contact me at:
 - Erik.martinezluna@txdot.gov