

Lidar Data Demystified: Harnessing Derivatives and the Impact of Data Democratization

Matt Hiland Director of Strategic Accounts Bridget Marcotte Senior Program Manager

3

Agenda

- Our Journey to Lidar
- Standard Lidar Data and Uses
- Exploring the Full Range of Derivative Products

TEXAS **GIS** FORUM

 Going Further: Managing and Sharing Lidar Data

Lidar Resolution

sanborn

USGS Elevation Program History

Increased Quality Data Drives Increased Derivative Products

- Over the past 20 years we have seen a significant increase in the quality of elevation data across the US
- Sanborn is one of six prime contract holders under the USGS GPSC contract, which has acquired lidar data covering almost the entire US over the past 7 years.
- The National Enhanced Elevation Assessment (NEEA) reported a 5:1 return on investment for higher density lidar.
- With increased density, we have seen increases to derivative product requirements, as well as the need for reoccurring flights more often.

30 meter DEM vs. 1 meter LIDAR-Derived DEM

Traditional hillshade derived from 30-meter DEM

LIDAR-created hillshade derived from 1-meter DEM

TEXAS GTS FORUM Lidar Classes

ASPRS/USGS Standard Lidar Point Classes			
Class 0	Created, never classified	Class 14	Wire – Conductor (Phase)
Class 1	Unclassified	Class 15	Transmission Tower
Class 2	Ground	Class 16	Wire-structure Connector (e.g. Insulator)
Class 3	Low Vegetation	Class 17	Bridge Deck
Class 4	Medium Vegetation	Class 18	High Noise
Class 5	High Vegetation	Class 19	Reserved
Class 6	Building	*Class 20	Ignored Ground (breakline proximity)
Class 7	Low Point (noise)	*Class 21	Snow
Class 8	Reserved	*Class 22	Temporal Change
Class 9	Water	Class 23-63	Reserved
Class 10	Rail	Class 64-255	User definable
Class 11	Road Surface	Flags	Overlap and withheld
Class 12	Reserved		
Class 13	Wire – Guard (Shield)		
*USGS Specific Point Data Record Formats 6-10			

Topographic Products

- Digital Elevation Model (DEM)
- Digital Surface Model (DSM)
- Normalized DSM (nDSM)
- Contours
- Slope
- Aspect
- Bare Earth Hillshade
- Highest hit Hillshade

9

DEM, DSM, nDSM

- An nDSM represents the height of features above ground, rather than the elevation of features relative to mean sea level or an ellipsoid.
- Provides the height of all man-made and natural objects

↑DSM - ↑DEM = nDSM↓

sanborr

11

TEXAS **GIS** FORUM

Contours

- A contour is an imaginary line that connects points of equal value.
- LiDAR data usually model the ground better than photogrammetry due to greater point density. As a result, fewer break lines are required, often resulting in a more rapid, cost-effective solution.
- USGS QL2 LiDAR data supports the creation of accurate 1-foot contours
- Lidar-derived contours are not smooth as derived from Photogrammetry.

Topographic Products – Slope, Aspect, Hillshade

- Slope represents the elevation change rate for each digital elevation model (DEM) pixel.
- Aspect is the orientation of slope, measured clockwise in degrees from 0 to 360, where 0 is north-facing, 90 is east-facing, 180 is south-facing, and 270 is west-facing.
- Site selection, erosion, 5G and solar planning, and microclimate are areas where slope and aspect are used.
- Shaded relief, or hillshading, is a technique where a lighting effect is added to a map based on elevation variations within the landscape. Used to interpret surface deposits, drainage, wetlands, etc.

Vegetation Products

- Canopy Height Models
- Height Above Ground
- Tree Canopy Cover
- 3D Vegetation Polygons
- Vegetation Height Raster

LiDAR Classification of Vegetation

LiDAR point cloud is classified according to height, enabling grasses, trees, and shrubs to be separated LiDAR point cloud showing a forest cutting (shelterwood). Grass and shrubs alternate on the forest floor.

TEXAS GIS FORUM Canopy Height Model

- Maps the tree height as a continuous surface. Each pixel in the CHM represents the tree overstory height above the underlying ground topography.
- Evaluating tree shade for a solar energy assessment
- Assessing vegetation risk to power lines and other utility infrastructure
- Modeling of forest metrics like tree size class, basal area, volume, etc., in conjunction with suitable field data
- Assessing fuel load and fire risk

10/30/2023

- Evaluating the condition of forests in recreational areas
- Improving line-of-sight radio wave propagation modeling for wireless planning

Height Above Ground

 Height Above Ground (HAG) models show the difference between the first return surface and the last return surface.

Tree Canopy Cover

 Tree Canopy Cover (TCC) models identify the density levels of forested areas for targeted canopy thinning operations to reduce wildfire risk

Buildings

- Buildings Outlines
- 3D Building Models

- Can be 2D/3D outlines or 3D wireframes
- Rapid and cost-effective compared to imagery-based stereo photogrammetric or heads-up digitizing techniques
- Semi-automated process
- 80-90% geometric accuracy
- GIS and CAD formats

• Impervious mapping, Storm water studies

USGS Base Standards

- Hydro-flattened breaklines
 - > 30m wide Rivers and Streams
 - > 2-acre Lakes and Ponds
- Hydro-flattened Bare-earth DEM

Without hydro breaklines

- Increased Resolution of Hydro Features
 - Lakes, Ponds, Rivers, and Streams
 - Can include Dry Riverbeds
- Hydro-enforcement
 - Cut through Culverts
- Elevation Derived Hydro (EDH)
 - Hydrographic Flowlines
 - Feature Connectivity
 - Drainage Network and
 Water Tables

• Hydrography Modeling through the watershed and stream delineation can be designed to create flow models, predict risk, and estimate the probability of events.

sanborr

TEXAS GTS FORUM Additional Classification

- Never Classified (Class Number 0)
- Ground (Class Number 2)
- Wires (Class Number 14)
- Poles (Class Number 15)
- Wire Guard (Shield) (Class number 13)
- Wire Conductor (Phase) (Class number 14)
- Transmission Tower (Class number 15)
- Insulators (Class number 16)

sanbori

Vegetation Management

29

Synergistic Data Integration

TEXAS **GIS** FORUM

- Clients continue to request the coordination of multiple data sets as a method to increase data quality, such as adding imagery to a lidar collection.
- Mobile and terrestrial lidar data collections merged with airborne collections can enable better data quality under tree canopies.
- Other examples include sonar, indoor lidar, and IOT

• Baseline data

- 3DEP (QL1 and QL2)
- Additional classification required
- Feature extraction required
- Created AI based building footprints
- New data (QL1)
 - Normalized data to baseline
 - Automated change detection
- Volumetric change from 2020 vs 2022 building footprints
- Data Integration Property Information
 - Allowed for damage valuation assessment

sanborn

Synergistic Imagery, Lidar and Vector

• RGB fusion and Digital Twins of the collected imagery and lidar point cloud can add perspective and real-world representation of the data

IOT Integration

- Real time disaster monitoring
- Real time weather monitoring
- Real time traffic monitoring and connected vehicle applications.

sanborn geospatial

Democratization Challenges

- Significant challenges exist when managing data discovery and dissemination for geospatial data sources:
 - Data storage
 - Data discovery
 - Data visualization
 - Data analysis
- Self-service analytics, data democratization, and data education can control the data tsunami and take collaboration to a whole new level.

Examples of Tools for Data Democratization GIZA and Sanborn GeoData Explorer[™]

- Provides metrics to understand where data is used and by whom
- Data can be raster or vector types
- Data can be created by Sanborn or can be existing data from the client
- Provides functionality to users:
 - Cloud based storage of data
 - User Credentialling
 - Data Cataloging
 - Data Analysis
 - Download Curation

sanboi

Conclusions

- Lidar can support Government and Commercial Use Cases
- Lidar data has been captured for most of the United Sates
 - Foundational data will support many needs
 - Additional data processing on existing data can increase utilization and ROI
- Collect once and use many
 - Understand your user community and what specifications and derivatives are needed
 - Different use cases require different densities, accuracy and seasonal requirements
 - Creation of multiple derivatives will empower a larger user base
 - Synergistic Data Integration allows for additional value and larger user community
- Plan for easy to access and easy to use tools to support larger user base
- Work with a vendor like Sanborn to develop baseline requirements, derivative products, and dissemination solutions

Thank you!

Feel free to drop by the booth or contact us. We look forward to talking with you.

Matt Hiland Director of Strategic Accounts mhiland@sanborn.com (512) 736-7001

Bridget Marcotte Senior Program Manager bmarcotte@sanborn.com (719) 244-2311