

Project Team

Project team includes members from Facilities & Construction, Safety & Operations, GIS, and ACC Inc

Project Goal

Enhance ACC facility construction, management, and maintenance using Geographic Information Systems (GIS) with high resolution mapping, enterprise geodatabases, and integrated systems that:

- · Track real property assets.
- Streamline facility planning and site selection.
- Inform facility design and construction.
- Monitor and manage utility infrastructure.
- Optimize workspace utilization.
- Analyze and schedule facility maintenance.
- Increased visibility to campus safety features.
- Integrate ACC systems.

ACC System GIS Architecture Plan Distributed GIS Desktop GIS Executives Phase Students and Public Users **Analysts** Operations Cloud GIS Web Maps Web Scenes Phase 2 Land Web Apps Interior 2021 Web Centric Web Tiles Server GIS Phase 3 Phase 4

ACC Inc

ACC Incubator for Professional Skills

- Supports internships, projects, and temporary positions for ACC students.
- Students office with employer, remote, or at ACC Inc.
- A dedicated professional office with 6 GIS workstations.
- Hourly employees paid \$15.50 and work max of 19 hrs/wk.
- Students graduate with the academic, technical, and professional skills desired by employers.

ACC Inc and partner organizations have funded over 50 paid GIS internships valued over \$500,000

Data Collection

Base Layers

ACC District reference layers

Interior Layers

Accurate 2D and 3D building layers created from CAD and Revit models

Orthoimagery and 3D Point Cloud

Land Layers

Real estate documents such as property lines, easements, right of way and archived property information

Exterior Layers

Accurate planimetric exterior campus layers created from CAD drawings

The San Gabriel Campus Pilot GIS includes interior, exterior, land, and base layers

Orthoimagery

- Collected high-resolution aerial images with ACC GIS drone.
- SGC Campus image is georeferenced and accurate to 12 cm.
- Mosaiced images to create a true color orthoimage with 10 cm pixels.

Professors Sally Holl, Sean Moran, and Adam Long demonstrate how to use the ACC GIS drone to collect high resolution aerial imagery

3D Point Cloud

- Collected high-resolution LiDAR with ACC GIS laser scanner.
- Merged 37 million points into a single point cloud with 2.5 cm spacing.
- SGC Campus 3D point cloud is georeferenced with exterior/interior points.
- Provides detailed campus models and as-built information for campuses where this
 data is not available.
- Record of the present condition of the building and can be used to identify potential structural deformations.
- Detailed map of any given terrain and high-resolution contour maps.

ACC System Interactive Base Map

Water Utility and Planimetrics

Indoor mapping: Searchable room finder with panorama photos.

3D Scene: Gabriel Campus Revit model with GIS plumbing layer

Interactive 2D and 3D Indoor Model

Data Assimilation

Base.gdb

- -ACC Facility Locations
- -ACC District Counties
- -ACC Service Area
- -ACC Taxing District
- -ACC 3 Regions
- -ACC Owned Parcels
- -Construction Zones -Safety Patrol zones

Administrative

- -Counties
- -Census Tracts
- -Census Block Groups
- -Census Blocks
- -City Limits
- -Zip Codes
- -School Districts
- -High Schools

Environmental

- -Flood Plains
- -Elevation Contours -Soils

Infrastructure

- -Roads
- -Parcels

Exterior.gdb

-Electric Substation

- -Distribution pipe
- -Pump
- -Tank
- -Valve

- -Ground Cover
- -Trees
- -Landscape Maintenance Areas
- -Irrigation System

Pavement Pavement

- -Hardscape
- -Pavement Markings
- -Parking Lots
- -Building Footprints

Sewer

- -Manhole
- -Meter
- -Pump

Storm Storm

-Retention Pond

Water

- -Waterbody
- -Waterline
- -Hydrants

Interior.gdb

<u>Indoors</u>

- -Sites (Campus)
- -Facilities (Buildings)
- -Levels (Floors)
- -Units (Rooms)
- -Details (walls, windows)
- -Points Of Interest*

Indoors 3D

Network

Prelim Network

*Point of Interest Features

- -Restrooms
- -AED
- -Evacuation Route Plans
- -Sustainability Features
- -Charging Stations
- -Smoking Areas
- -Public Art
- -Blue Emergency Phones
- -Bicycle Parking
- -Emergency Rally Muster Points
- -Police
- -Drinking Fountains
- -Vending Machines

Land.gdb

Design

egal

- -Plans and Drawings (with attachments)
- 14
- -Easement Boundaries Legal (with attachments)
- -Easment Lines COGO
- -Parcel Boundaries Legal (with attachments)
- -Parcel Lines COGO

Take Away and Value

ACC has the resources to create robust, high-resolution, and high-value maps to support Facilities and Construction as well as other departments.

Leveraging ACC knowledge with GIS department tools, expertise, and interns, is a win-win for ACC and its students.

Value for ACC: 645 hours combined staff and intern time on project. Cost ~ \$13,000. An equivalent project by outside consulting venders is valued at ~ \$33,600.

Value for Student Interns: Paid real-world experience with marketable skills in GIS, Revit models, drones, Lidar, CAD, construction and real estate documents.

Next Steps

Seek ACC SGC Pilot Project Feedback

- Remove, add, and/or amend layers as requested by department.
- Request subject matter expert (SME) review (e.g. water utilities).
- Present to ACC leadership.
- Request feedback and finalize pilot.

Create Facilities & Construction GIS

- Complete real estate base map for each campus first.
- Then add interior room info such as mechanical equipment and 360's.
- Add in exterior utilities for other campuses.

Future

- App for students to navigate to classrooms.
- Work with other departments to add feature layers of their desired info.

QR code to the Storymap version of this presentation.

Credits:

Deborah Massaro

deborah.massaro@austincc.edu

Sean Moran

smoran@austincc.edu

Holly Wiese

holly.wiese@austincc.edu