

Maintaining 9-1-1 Data Integrity Using FME March 09, 2022

Texas GIS Forum 2022

North Central Texas Emergency Communications District | NCT911.ORG | @NCT9_1_1

Agenda:

- Introduction
- What are FME/ETL
- Why an ETL
- ETL @ NCT9-1-1
 - Field, Value, and Default Mapping
 - Conditional mapping
- Conditional Mapping
- Beyond an ETL
- Resources

- 13 counties in the DFW metroplex. Excluding Dallas*, Tarrant, and Denton
- 40 Emergency
 Communication
 Centers (ECC)
- ~2 million citizens served

*The cities of Sachse, Sunnyvale, Balch Springs, Seagoville, Combine, Wilmer, and Cockrell Hill are part of NCT9-1-1's service area as well

- Dozens of entities using database replication and 5 cities* submitting data via an ETL
- Biweekly updates to public safety systems
 - ECRF & LVF
 - 9-1-1 Call taking map
 - Locators
 - Supplemental apps
 - Download site

*The cities are Frisco, McKinney, Allen, Sachse, and Weatherford

What is FME

- Feature Manipulation Engine. Enables data transformations via its rich data model which covers all possible geometry and attribute types.
- FME was the first tool designed to be a <u>spatial</u> ETL application. Today, FME's ETL capabilities cover many different kinds of data, both spatial and non-spatial.

What is ETL

Extract, **T**ransform, **L**oad. Process that extracts data from one data source/format, transforms it, and loads in a destination database and format.

Graphics from https://www.talend.com/resources/what-is-etl/

Why an ETL

- An ETL does not require a unified schema
- QAQC can be largely automated via on-the-fly fixes and reporting
- Automation potential from beginning to end
- Way to bypass budgetary/licensing restrictions on the client side
 - FME can read & transform virtually all spatial data types
- Change Detection

Change Detection

- Change detection eliminates the need for wipe & replaces
 - Simple to use & reliable
- Example: New data (revised) is compared to existing data in destination databases (original)
 - If present in revised but missing in original, add to original
 - If it no longer exists in revised, but is present in original, *delete* from original
 - If it exists in both, but is slightly different in each, delete original version and add revised version ("edits" or *delete* + *add*)
 - If identical, leave them unchanged

Image from http://docs.safe.com/fme/html/FME_Desktop_Documentation/FME_Transformers/Transformers/changedetector.htm

Field, Value Mapping

- Field mapping allows for *Field A = Field B* translations
- Value mapping allows for Value 1 of Field A = Value 3 of Field B translations
- Default mapping allows for *Field B = Uniform Value*

Field & Default Mapping

GC_Exception		
Source	ALLEN ETL (Default Mapping)	
FromAddr_L	🔶 LeftFromAddress	
ToAddr_L	🔶 LeftToAddress	
FromAddr_R	🔶 RightFromAddress	
ToAddr_R	🔶 RightToAddress	

Value Mapping

_				
A	Attribute Selection			
	Source Attribute:	COA_Classification		
	Destination Attribute:	NCT_Type		
	Default Value:	Problem in NCT_Type transformer		
Value Map				
	Mapping Direction:	Forward (Source To Destination)		
	Source Value		Destination Value	
		STORE	🗖 Shop	
	GARAGE_PUBLI	C PARKING	🗖 Garage	
	2_3_4PLEX		🗖 Duplex	
	AMUSEMENT_C	COMM_IN	🗖 Other	
	ANTIQUE_SHOP)	🗖 Shop	
APT AUTO_PAINT_BODY_SHP AUTO_PARTS_SALES AUTO_REPAIR_MAJOR (MultiLine)			Apartment	
		ODY_SHP	🗖 Shop	
		ALES	🗖 Shop	
		MAJOR (MultiLine)	🗖 Shop	
	AUTO_REPAIR_I	MAJOR (MultiLine)	🗖 Shop	
	AUTO_REPAIR_I	MINOR	Shop	

Conditional Mapping

- "Conditional mapping" refers to any relational "translation" from source to destination features that requires more than a simple 1 = a, Apt = Apartment, etc.
- Similar idea to if/else statements

Conditional Mapping – Examples

Goal: Create and populate the field "Low Range" from the values of "LeftFromAddress" and "RightFromAddress." This field stores the lowest of all "from" ranges.

Calculate *LowRange*:

If <u>LeftFromAddress</u> = 0, <Null> Then, <u>Low Range</u> = <u>RightFromAddress</u> Elif <u>RightFromAddress</u> = 0, <Null> Then, <u>LowRange</u> = <u>LeftFromAddress</u> Else, take the minimum of <u>LeftFromAddress</u> and <u>RightFromAddress</u>

	Test Condition	Attribute Value
lf	LeftFromAddress ATTRIBUTE_VALUE_NULL OR LeftFromAddress ATTRIBUTE_IS_EMPTY OR LeftFromAddress ATTRIBUTE_IS_MISSING OR @Value(LeftFromAddress) = 0	RightFromAddress
Else If	RightFromAddress ATTRIBUTE_VALUE_NULL OR RightFromAddress ATTRIBUTE_IS_EMPTY OR RightFromAddress ATTRIBUTE_IS_MISSING OR @Value(RightFromAddress) = 0	LeftFromAddress
Else	<all conditions="" other=""></all>	📰 @Evaluate(@min(@Value(LeftFromAddress),@Value(RightFromAddress)))

Conditional Mapping - Examples

Goal: Create and calculate the field "Parity_L" from the values of "sFromAddr_L" and "sToAddr_L." This field indicates whether the left ranges for a given road are Even, Odd, Zero, or Both*.

Calculate <u>Parity L</u>:

If <u>sFromAddr_L_</u> ENDS_WITH with 0,2,4,6,8
AND <u>sFromAddr_L</u> ≠0**
AND <u><i>sToAddr_L</i></u> ENDS_WITH with 0,2,4,6,8
AND <u>sToAddr_L</u> ≠ 0**
Then <i>Parity_L</i> = Even
Elif <u>sFromAddr_L_</u> ENDS_WITH with 1,3,5,7,9
<u>_<i>sToAddr_L_</i></u> ENDSWITH with 1,3,5,7,9
Then <i>Parity_L</i> = O dd
Elif sFromAddr_L = 0
AND sToAddr_L = 0
Then Parity_L = Zero
Else Parity = Both

	Test Condition	Attribute Value
lf	@Value(sFromAddr_L) ENDS_WITH 0 @Value(sFromAddr_L) ENDS_WITH 2 @Value(sFromAddr_L) ENDS_WITH 4 @Value(sFromAddr_L) ENDS_WITH 6 @Value(sFromAddr_L) ENDS_WITH 8 @Value(sFromAddr_L) NOT_= 0 @Value(sToAddr_L) ENDS_WITH 0 @Value(sToAddr_L) ENDS_WITH 2 <4 more test(s)> Composite Test: (1 OR 2 OR 3 OR 4 OR 5 AND 6) AND (7 OR 8 OR 9 OR 10 O	Ξ ε
Else If	 @Value(sFromAddr_L) ENDS_WITH 1 @Value(sFromAddr_L) ENDS_WITH 3 @Value(sFromAddr_L) ENDS_WITH 5 @Value(sFromAddr_L) ENDS_WITH 7 @Value(sFromAddr_L) ENDS_WITH 9 @Value(sToAddr_L) ENDS_WITH 1 @Value(sToAddr_L) ENDS_WITH 3 @Value(sToAddr_L) ENDS_WITH 5 <2 more test(s)> Composite Test: (1 OR 2 OR 3 OR 4 OR 5) AND (6 OR 7 OR 8 OR 9 OR 10)	0
Else If	@Value(sFromAddr_L) = 0 AND @Value(sToAddr_L) = 0	🗖 z
Else	<all conditions="" other=""></all>	B

*These special scenarios are dealt with at a later step

** This accounts for numbers that end in 0 but do not equal 0. E.g.: 10, 20, etc.

Conditional Mapping – Examples

Goal: Split incoming road segments at specified boundaries (city limits, county boundary, etc.), assign the corresponding left & right values (County_L, County_R, etc.), and rearrange the road ranges based on how much of the original road each segment retained.

Beyond an ETL

- Custom tools can be created within an ETL or as a standalone tool. These tools can help with:
 - QAQC
 - Data quality
 - Reporting
 - General automation
- Can integrate existing scripts & automation
- <u>FME server</u> allows for further automation, scheduling, etc.

- "Neighborhoods" tool
 - Tool that downloads latest subdivision layer from relevant appraisal districts, cleans up geometries & labels, and loads finalized product in destination databases

- Road Centerline "Bufferer"
 - Tool that grabs attributes from nearby polygons and not where the road sits in

 Auto-Splitting & Auto-Attribution (ASAT):

Tool that splits incoming road segments at specified boundaries (city limits, county boundary, etc.), assigns the corresponding left & right values (County_L, County_R, etc.), and rearranges the road ranges based on how much of the original road each segment retained.

Embedded tool that automatically splits input roads at specified boundaries (via user parameters) and reassigns ranges based on how much of the original segment each split segment retains.

- Other custom FME tools used at NCT9-1-1:
 - Standalone change detection tool
 - Highway shield extractor
 - Raster formatter
 - Reprojects & converts from one format to another (depending on what the user chooses)
 - Road full name concatenator
 - Standalone geometry cleaner
 - Standalone NGUID concatenator
 - Label cleaner
 - Removing "phase 1," "tract 2," etc. from subdivision names

FME Tips & Best Practices

- Document your tools
- Give unique names to transformers
- Avoid hardcoded values
 - Use <u>User Parameters</u> as much as possible

Resources

- <u>Safe.com</u>
 - Tutorials & Training
 - Community "Hub"
 - Official documentation
 - Links to FME partners
 - FME Hub
- Webinars & Conferences
 - Look for FME/ETL contents!

Questions or Comments?

Contact Info

Bruno Blanco 9-1-1 GIS Specialist BBlanco@nct911.org Or 911GISTeam@nct911.org 817-980-2586

North Central Texas Emergency Communications District | NCT911.ORG | @NCT9_1_1